K1 of a p-adic group ring II. The determinantal kernel SK1

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K1 of a p-adic . . .

We study the K-group K1 of the group ring of a finite group over a coefficient ring which is p-adically complete and admits a lift of Frobenius. In this paper, we consider the image of K1 under the determinant map; the central tool is the group logarithm which we can define using the Frobenius lift. Using this we prove a fixed point theorem for the determinantal image of K1.

متن کامل

The Group Ring of Sl 2 (p F P-adic Integers for P Odd

Let p > 2 be a prime, The group ring RG is calculated nearly up to Morita equivalence: The projections of RG into the simple components of KG are given explicitly and the endomorphism rings and homomorphism bimodules between the projective indecomposable RG-lattices are described.

متن کامل

THE RING OF p-ADIC INTEGERS

Let k > 1 be an integer and let p be a prime. We show that if pa 6 k < 2pa or k = paq + 1 (with q < p/2) for some a = 1, 2, 3, . . . , then the set { (n k ) : n = 0, 1, 2, . . . } is dense in the ring Zp of p-adic integers, i.e., it contains a complete system of residues modulo any power of p.

متن کامل

The group ring of SL 2 ( p 2 ) over the p - adic integers

This paper describes the ring theoretic structure of the group rings of SL 2 (p 2) over the p-adic integers.

متن کامل

SIMPLE p - ADIC GROUPS , II

0.1. For any finite group Γ, a “nonabelian Fourier transform matrix” was introduced in [L1]. This is a square matrix whose rows and columns are indexed by pairs formed by an element of Γ and an irreducible representation of the centralizer of that element (both defined up to conjugation). As shown in [L2], this matrix, which is unitary with square 1, enters (for suitable Γ) in the character for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2015

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2014.09.017